

WIND POWER PRODUCTION FORECASTING USING ANT COLONY OPTIMIZATION AND EXTREME LEARNING MACHINES

MARIA CARRILLO¹, JAVIER DEL SER^{1,2,3}, MIREN NEKANE BILBAO¹, CRISTINA PERFECTO¹, DAVID CAMACHO⁴

1: UNIVERSITY OF THE BASQUE COUNTRY EHU/UPV, BILBAO (BIZKAIA, SPAIN) 2: TECNALIA RESEARCH & INNOVATION, ZAMUDIO (BIZKAIA, SPAIN) 3: BASQUE CENTER FOR APPLIED MATHEMATICS (BCAM), BILBAO (BIZKAIA, SPAIN) 4: UNIVERSIDAD AUTÓNOMA DE MADRID, MADRID (MADRID, SPAIN)

12/10/2017 IDC PRESENTATION

OUTLINE OF THE PRESENTATION

- Introduction and motivation
- Research hypothesis
- Contribution and Objectives
- Problem Formulation
- Proposed Scheme
- Experimental results and discussion
- Conclusions
- Future Research Lines

2

OUTLINE OF THE PRESENTATION

INTRODUCTION: DIGITALIZATION OF THE ENERGY GRID (1/2)

Digitalization of the energy grid

- Thanks to the deployment of the ICT-powered infrastructure
- Bidirectional information flows from the grid to the operator, supervisor or customer:
 - Demand side management
 - Fraud detection
 - Improved energy efficiency in buildings
- Particular byproduct: rich data substrate of energy consumptions
 - Match overall generation to consumption
 - Detect abnormal patterns in the consumed energy traces (tampering)
- Renewable energy sources
 - Maximization of the installation productivity
 - Pattern characterization of the produced energy towards its injection upstream

INTRODUCTION

INTRODUCTION: PREDICTIVE MODELS (2/2)

Naïve Machine Learning approaches -Model ensembles -Neural Networks Input layer Hidden layer Output layer -Support Vector Machines Feature Space Input Space -Decision Tree Regressors -Deep Learners nature-inspired heuristics machine-learning models Good for very Hybridization of big datasets

INTRODUCTION

CONTRIBUTION AND OBJECTIVES

PROBLEM FORMULATION

$$\begin{split} \mathbf{X}_t &\doteq \{\mathbf{X}_t^{\diamondsuit}, \mathbf{X}_{t-1}^{\diamondsuit}, \dots, \mathbf{X}_{t-\Delta_X}^{\diamondsuit}, P_t, P_{t-1}, \dots, P_{t-\Delta_X}\} \\ \text{Where:} \\ \mathbf{X}_t^{\diamondsuit} &\doteq \{\mathbf{X}_t^{\diamondsuit, \mathbf{p}_1}, \mathbf{X}_t^{\diamondsuit, \mathbf{p}_2}, \dots, \mathbf{X}_t^{\diamondsuit, \mathbf{p}_P}\}; \quad \mathbf{p} \in \{\mathbf{p}_1, \dots, \mathbf{p}_P\}; \ \mathbf{p}_i \in \mathbb{R}^2 \\ \text{And:} \quad P_{t+\Delta_t} &= M_{\boldsymbol{\theta}}(\mathbf{X}_t) \quad \text{such that} \\ \\ & \text{Maximize} \ \widehat{\varphi}(\mathcal{X}') \doteq \frac{1}{K} \sum_{k=1}^K \varphi(k, \mathcal{X}'); \qquad \varphi(k, \mathcal{X}) \in \mathbb{R}^+ \end{split}$$

Feature selection problem that can be formulated as an optimization problem

INGREDIENT #1: k-fold CV

- The original sample is randomly partitioned into *k* equal sized subsamples.
- One of the k subsamples: validation data for testing the model.
-) The remaining k 1 subsamples: training data.
- 4) Repeat k times (k folds), with each of the k subsamples used exactly once as the **validation data**.
- 5) The k results from the folds can then be averaged to produce a single estimation.

12/10/2017 IDC PRESENTATION

7

INGREDIENT #1: k-fold CV

INGREDIENT #2: Ant Colony Optimization (ACO)

Probability that the ants led to this node

12/10/2017 IDC PRESENTATION

8

INGREDIENT #2: ACO

INGREDIENT #3: Extreme Learning Machines (ELM)

- Low complexity variant of neural networks characterized by a fast training and learning process
 - Most significant characteristic:

- Can be carried out by randomly setting the weights of the underlying neural network, and then taking the pseudoinverse of the hidden-layer output matrix.
 - Clustering
 - Regression
 - Classification

THE RECIPE: PROPOSED ALGORITHM

del País Vasco

12

EXPERIMENTAL RESULTS AND DISCUSSION

- ROLDANA parameters
 - M = 22 turbines
 - Total nominal power: 36,740 KW
- DATA
 - From January 2013 to October 2015
 - Time step between wind power measurements: 1h
- Variables (NWP model):
 - Temperature (V1)
 - Wind module (V2)
 - Wind U/V components (V3 and V4)
- Rectangular grid of P = 45 points

- FARO FARELO parameters
 - M = 18 turbines
 - Total nominal power: 30,060 KW
- Used values
 - $-\Delta t = 1$ time steps
 - $-\Delta X = 2$ past values of every feature
 - T45*5*2 = 450 possible features/scenario
 - A = 100 ants
 - ELM with 200 hidden neurons
 - I = 100 iterations
 - Predictive performance:
 - coefficient of determination or R² score.
- 20 independent experiments per every simulated scenario have been run in order to account for the ACO algorithm to be stochastic.

EXPERIMENTAL RESULTS AND DISCUSSION

Does the prediction perform better when using ACO wrapper?

R² convergence plots of the proposed ACO-ELM model

Horizontal bold dashed lines correspond to the R² score when no feature selection is made

Convergence curves for an alternative ACO-Nearest Neighbors model

In both simulated scenarios the feature selection process provides a predictive gain with respect to the case when no feature selection is made

(in the order of 0.1 in the R^2 scale)

12/10/2017 IDC PRESENTATION

EXPERIMENTAL RESULTS AND DISCUSSION

CONCLUSIONS AND FUTURE RESEARCH LINES

- Wind power production forecasting has been tackled by a hybrid predictive model that combines ELMs and ACOs
 - Main design principle: possible input features to the model = nodes of a solution graph
 - This is efficiently explored by using ant colonies guided by a fitness equal to the crossvalidated prediction score
 - ELM: light optimization procedure of the overall model due to the renowned low complexity training process of this particular class of supervised learners
 - Validated with real data recorded in two different wind farms located in Spain characterized by very distinct wind patterns
 - The performance enhancement obtained is promising (R² increases of up to 0.1)
- Future research lines:
- 1) Accelerate the convergence properties of the ACO wrapper by adding heuristic information to the pheromone calculation
- 2) How to reflect the collinearity between nodes u and v in the pheromone calculation expression
 - So as to avoid transitions between nodes (features) when they are strongly correlated to each other.
- 3) Other swarm heuristics will be also under active investigation as alternative feature selection wrappers
- 4) And many-many other ideas to come!

12/10/2017 IDC PRESENTATION

CONCLUSIONS AND FUTURE RESEARCH LINES

THANK YOU!

WIND POWER PRODUCTION FORECASTING USING ANT COLONY OPTIMIZATION AND EXTREME LEARNING MACHINES

MARIA CARRILLO BARRENETXEA mcarrillo007@ikasle.ehu.eus

This work has been co-funded by the following research projects: EphemeCH (TIN2014-56494-C4-4-P) from the Spanish Ministry of Economy and Competitivity, under the European Regional Development Fund FEDER, and by the Basque Government under its ELKARTEK research program (BID3ABI project).

12/10/2017 IDC PRESENTATION

