IDC 2017

11th International Symposium on Intelligent Distributed Computing 11 – 13 October 2017, Belgrade, Serbia

Agent-Based Computing in the Internet of Things: a Survey

Claudio Savaglio, Giancarlo Fortino, Maria Ganzha, Marcin Paprzycki, <u>Costin Badica</u>, and Mirjana Ivanovic

CIT, University of Craiova, Craiova, Romania - cbadica@software.ucv.ro

Outline

- 1) Introduction
- 2) Background and Motivations

3) Agents' Contribution in Developing Internet of Things Systems

4) Analysis and Conclusion

1_Introduction [MF2010]

Internet of Things (IoT)

Everything is able to be networked, discovered and exploited.

• Smart Objects (SOs)

Real world objects with embedded smartness, autonomously interacting each others and proactively providing cyberphysical services

Issue

Proper modeling, programming, and simulation paradigms are required for developing IoT systems.

2_Background and Motivations [AIM2010]

IoT Features:

Heterogeneous components Heterogeneous network types Heterogeneous stakeholders <u>IoT Desiderata:</u> Smartness Interoperability Autonomy

2_Background and Motivations [AIM2010]

IoT Features:

Heterogeneous components; Heterogeneous network types; Heterogeneous stakeholders. Support required for all the development phases <u>IoT Desiderata:</u> Smartness; Context-awareness; Autonomy.

2_Background and Motivations [12004]

A software Agent:

- is an autonomous, goal-directed entity;
- is situated in, is aware of, and reacts to its environment;
- cooperates to accomplish its tasks.

Agents are able to:

- encapsulate complex functionalities and abstract heterogeneous resources;
- act as interoperability facilitators;
- fully support the development of complex, cooperative and adaptive distributed systems.

2_Background and Motivations [12004]

Agent-based Computing (ABC) as a well-established

- Modeling paradigm
 - abstractions and metaphors for modeling complex systems, their components, interactions and organizational relationships;
- Programming paradigm
 - for concretely implementing self-steering, smart, context-aware and interoperable agents systems;
- Simulation paradigm
 - for studying macro phenomena and patterns, as well as individual behaviors and environment evolution, before the system deployment;
- Development methodology
 - providing a systematic approach to the usage of agent-oriented metaphors, techniques and tools.

Strong conceptual relation exists between agents and SOs, as well as between MASs (Multi Agent Systems) and IoT systems [FGRS2015].

ABC has been profitably exploited for modeling, programming and simulating IoT applications and systems.

ABC as IoT Modeling Paradigm

Goal: capturing key characteristics of SOs and IoT systems, at different degrees of granularity and in a technology-agnostic way.

SO concept	Agent concept	Example from surveyed work
SO/SOs system	Agent/MAS	Agentified SOs characterized
Functionality	Goal	• Role [SM2015, K2008]
Working plan	Behavior	 Template [V2013] Automaton driven by incoming
Device (sensor, actuator, etc.)	Resource	 stimuli (messages) [MZ2006 et. Al] Tasks performed according to events [FGLLR2013]
Autonomy, proactiveness and situatedness	Implicitly embedded within agent abstraction	

ABC as IoT Programming Paradigm

Goal: Implementing SOs and IoT systems according to their features and requirements

SO/IoT system functionality	Agent- oriented mechanism	Example from surveyed work	
Augmentation	Resource Interface	Software adapters [K2008, FGLLR2013], device-based interfaces [ZAPKB2016]	
Communication	Communication Interface	FIPA ACL [FGLLR2013], KQML, XML and JSON [LRLH02014]	Technical, syntactical and
Knowledge Management	Ontology, Reasoner	Shared ontology and knowledge bases [K2008]	semantical interoperability
Service provision	Service interface	Cloud-based services [FGRS2014], SOA/REST services [MIBV2014]	
Context and Self Management	Environment and self-data analysis	Exploitation of autonomic and cognitive paradigms [SFZ2016]	

ABC as IoT Simulation Paradigm

Goal: understanding overall dynamics, estimating performance, and validating models, protocols and algorithms featuring under-development SOs and IoT systems.

Approach	Pro	Con			
Agent-based simulation [KD2009 et. Al.]	Collective dynamics and behavioral patterns inspection	Quasi aseptic simulation environments			
Network-based simulation [WG2017 et. Al.]	Low-level aspects (communication settings, propagation models, etc.) finely handled	Few abstractions for implementing the application logic			
Hybrid simulation [FRS2016 et. Al.]	Effective simulation of both low- and high-level aspects	Exploratory approach			

Agent-based IoT development methodology

Goal: disciplining the exploitation of agent-based suite of models, programming techniques and simulation tools but, also, specifically considering:

- the cyber-physical nature of the involved entities and environments [MFM2014 et.Al.];
- by design, solutions for interoperability, security and scalability [Z2016];
- the identification of IoT users and stakeholders [SM2015 et Al.];
- proper management, coordination and virtualization mechanisms [FGRS2015 et. Al.];
- infrastructural features and limitations according to the specific IoT system requirements [Z2016];
- guidelines and best-practices decoupled from a specific technology, protocol or application context [FGRS2015 et. Al.].

Table 1. Surveyed works and provided agent-based features - *T*=*technological*, *Sy*=*syntactical*, *Se*=*semantic interoperability; A*=*autonomicity; C*=*cognitivity; V*=*virtualization; S*=*security.*

Surveyed work	Agent-based		Agent-based							Agent-based		Agent-based
Surveyed work IoT model		nodel	IoT implementation						ation	IoT simulation		IoT Mothodology
<name, rei.=""></name,>	Fine	Coarse	T	Su	Sa	C	Λ	\mathbf{v}	S	Duro	Hybrid	101 Methodology
	grained	grained	1	Sy	Se		A	V	3	rure	Пурта	
Cascadas, [17]	Х		X	Χ			Х					
iCore, [21]	X		X	Х	Χ	X			Х			
ACOSO [6], [9],	v		\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}			v	v
[22], [42], [43]	Λ		Λ	Λ	Λ	Λ	Λ	Λ			Λ	Λ
UBIWARE, [19];	v		\mathbf{v}	\mathbf{v}	v	\mathbf{v}		\mathbf{v}	v			
UBIROAD, [26]	Λ		Λ	Λ	Λ	Λ		Λ	Λ			
[29]		Х	X	Χ				X				
[44]	Х		X	X	X		Х	X				X
AoT, [27]		Х	X	X		X	Х	X				
Smart Grids, [40]		Х		Χ						X		
[41]		Х	X	Χ				X			Х	
TAEC, [39]		Х	X	Χ	X		Х	X	Х			
CIoT, [32]	Х		X	Χ	Χ	X		X	Х			
iSapiens, [23]	Х		X	Х				X	Х			
[31]		Х	X	Х				X				
Radigost, [38]		Х	X	Χ				X				
ASSIST, [45]	Х		X	Χ	X	X		X		X		
BEMOSS, [25]		Х	X	X				X	Х			
INTER-IoT, [50]	Х		X	Χ	X	X	Х	X	Х		X	X
VICINITY, [33]	Х		X	Χ	X	X		X	Х			
SOL, [28]	X		X	Х	Χ		Х					
[20]	Х		X	Χ	X							
[24]		Х	X	X			Х					
[30]		Х	X	Χ		X	Х					
Smart Santander,		v	\mathbf{v}	v	v			\mathbf{v}	v			
[35]		Λ	Λ	Λ	Λ			$ \Lambda $	Λ			
[34]		Х	X	Х	Х			Х	Х			
Prometheus, [46]	X		X	Χ	X			X	X			X
ASEME, [18]	X		X	Χ	Χ			X	Х			X
SAMSON, [51]	X						Χ			X		

Table 1. Surveyed works and provided agent-based features - *T*=*technological*, *Sy*=*syntactical*, *Se*=*semantic interoperability; A*=*autonomicity; C*=*cognitivity; V*=*virtualization; S*=*security.*

Surveyed work	Agent-based		Agent-based						d	Agent-based		Agent-based
surveyeu work	IoT model		IoT implementation						ation	IoT simulation		IoT Mothodology
<name, rei.=""></name,>	Fine	Coarse	T	Su	50	C	Δ	\mathbf{V}	S	Duro	Hybrid	101 Mielilouology
	grained	grained	1	Sy	Se	C	A	V	3	rure	Пурта	
Cascadas, [17]	X		Х	X			Х					
iCore, [21]	X		X	Χ	Х	X			Х			
ACOSO [6], [9],	v		\mathbf{v}	v	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}			v	v
[22], [42], [43]	Λ		Λ	Λ	Λ	Λ	Λ	Δ			Λ	Λ
UBIWARE, [19];	v		\mathbf{v}	v	v	\mathbf{v}		\mathbf{v}	v			
UBIROAD, [26]	Λ		Δ	Δ	Δ			Δ	Λ			
[29]		X	X	X				X				
[44]	X		X	Χ	Χ		Х	X				Х
AoT, [27]		X	X	Х		X	Х	X				
Smart Grids, [40]		X		Χ						X		
[41]		X	X	Χ				X			X	
TAEC, [39]		X	X	Χ	X		X	X	Х			
CIoT, [32]	X		X	Х	Х	X		X	Х			
iSapiens, [23]	X		X	Χ				X	Х			
[31]		X	X	Х				X				
Radigost, [38]		X	X	Х				X				
ASSIST, [45]	X		X	Х	Х	$ \mathbf{X} $		X		X		
BEMOSS, [25]		X	X	X				X	Х			
INTER-IoT, [50]	X		X	Χ	Х	X	Х	X	Х		X	Х
VICINITY, [33]	X		X	X	X	X		X	Х			
SOL, [28]	X		X	X	Χ		X					
[20]	X		X	Χ	Х							
[24]		X	X	Χ			Х					
[30]		X	X	Χ		$ \mathbf{X} $	X					
Smart Santander,		x	x	x	x			\mathbf{x}	x			
[35]		~	1	1	1			1	1			
[34]		X	X	Х	Х			X	Х			
Prometheus, [46]	X		Х	X	X			X	Χ			X
ASEME, [18]	X		X	Χ	X			X	X			X
SAMSON, [51]	X						X			X		

Agent-based simulators and methodology are underestimated

4_Analysis and Conclusion

Strenghts

- Modeling at different degrees of details
- Programming interoperable; autonomous, and distributed solutions;
- Validating multiple design choices, before their actual deployment;
- Systematically supporting all the development phases.

Weaknesses

- Few and outdated agentbased commercial platforms [MM2005];
- Costs for implementing agent-based IoT solutions;
- NOT everything can be profitably agentified and agents are NOT a universal solution [WJ1999].

(15/14

The adoption of ABC paradigm needs to be carefully assessed but it represents, to date, the most suitable choice for effectively developing the majority of advanced (current and future) IoT systems.

ABC for IoT

References (1)

- [MF2010] Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: From active data management to event-based systems and more. Springer (2010)
- [AIM2010] Atzori, L., A. Iera, and G. Morabito, "The internet of things: A survey," Computer networks, vol. 54, no. 15, 2010, pp.2787-2805.
- [L2004] Luck, M., P. McBurney, and C. Preist. "A manifesto for agent technology: Towards next generation computing." Autonomous Agents and Multi-Agent Systems 9.3 (2004): 203-252.
- [K2008] A. Katasonov, et al. "Smart Semantic Middleware for the Internet of Things," ICINCO-ICSO, vol. 8, 2008, pp. 169-178.
- [V2009] Vlacheas, P., et. Al. (2013). Enabling smart cities through a cognitive management framework for the internet of things. IEEE communications magazine, 51(6), 102-111. ISO 690
- [LRLHO2014] T. Leppänen, J. Riekki, M. Liu, E. Harjula, T. Ojala, "Mobile agents based smart objects for the internet of things," Internet of Things Based on Smart Objects, Springer Int. Publishing, 2014, pp. 29-48.
- [MZ2006] Manzalini, A., & Zambonelli, F. (2006, June). Towards autonomic and situation-aware communication services: the cascadas vision. In Distributed Intelligent Systems: Collective Intelligence and Its Applications, 2006. DIS 2006. IEEE Workshop on (pp. 383-388). IEEE.
- [FGLLR2013] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo, "An agent-based middleware for cooperating smart objects," Highlights on Practical Applications of Agents and Multi-Agent Systems, Springer Berlin Heidelberg, 2013, pp. 387-398.
- [ZAPKB2016] Zhang, X., Adhikari, R., Pipattanasomporn, M., Kuzlu, M., Bradley, S.R., 2016. Deploying IoT devices to make buildings smart: Performance evaluation and deployment experience, in: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on. IEEE, pp. 530-535.
- [FGRS2014] Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C. (2014, May). Integration of agent-based and cloud computing for the smart objects-oriented iot. In Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 IEEE 18th International Conference on (pp. 493-498). IEEE.
- [MIBV2014] Mitrović, D., Ivanović, M., Budimac, Z., & Vidaković, M. (2014). Radigost: Interoperable web-based multi-agent platform. Journal of Systems and Software, 90, 167-178.
- [SFZ2016] Savaglio, C., Fortino, G., & Zhou, M. Towards interoperable, cognitive and autonomic IoT systems: An agent-based approach. In Internet of Things, 2016 IEEE 3rd World Forum on (pp. 58-63). IEEE. 2016.
- [KD2009] Karnouskos, S., & De Holanda, T. N. (2009, November). Simulation of a smart grid city with software agents. In Computer Modeling and Simulation, 2009. EMS'09. Third UKSim European Symposium on (pp. 424-429). IEEE.

References (2)

- [WG2017] Wehner, P., & Göhringer, D. (2017). Internet of things simulation using OMNeT++ and hardware in the loop. In Components and Services for IoT Platforms (pp. 77-87). Springer International Publishing.
- [FRS2016] Fortino, G., W. Russo, and C. Savaglio. "Simulation of Agent-oriented Internet of Things Systems." Proc. 17th Workshop" From Objects to Agents. 2016
- [FGRS2015] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio "Towards a Development Methodology for Smart Object-Oriented IoT Systems: A Metamodel Approach," Systems, Man, and Cybernetics, IEEE International Conference on, 2015, pp. 1297-1302.
- [MFM2014] Manate, B., Fortis, F., & Moore, P. (2014, December). Applying the Prometheus methodology for an Internet of Things architecture. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (pp. 435-442). IEEE Computer Society.
- [Z2016] Zambonelli, F. (2016). Towards a General Software Engineering Methodology for the Internet of Things. arXiv preprint arXiv:1601.05569.
- [SM2015] Spanoudakis, N., & Moraitis, P. (2015). Engineering ambient intelligence systems using agent technology. IEEE Intelligent Systems, 30(3), 60-67.
- [MM2005] Marik, V., & McFarlane, D. (2005). Industrial adoption of agent-based technologies. IEEE Intelligent Systems, 20(1), 27-35.
- [WJ1999] Wooldridge, M. J., & Jennings, N. R. (1999). Software engineering with agents: Pitfalls and pratfalls. IEEE Internet Computing, 3(3), 20-27.

Thank you for your attention!

Questions?