Spatially Structured Evolutionary Algorithms: Graph Degree, Population Size and Convergence Speed

Carlos M. Fernandes^{1,2}

J.L.J. Laredo³

Agostinho C. Rosa¹

¹LaSEEB-ISR-IST, University of Lisbon, Portugal

²Department of Computer Architecture, University of Granada, Granada, Spain ³LITIS, University of Le Havre, Le Havre, France

11th International Symposium on Intelligent Distributed Computing Belgrade, Serbia, October 2017 (panmictic) EA: population of solutions that recombine and mutate to generate new solutions.

spatially structured EA: recombination is restricted to neighborhoods within the network structure.

Study the relationship between population structure, population size and performance.

RAT DE RECTARA RECENS STATORE V. CEDE AR

<mark>Z</mark>e

10 10 G

<mark>l al</mark>

Population Structure

k = n - 1 (panmictic population)

k = 2

Population Structure

k = 2

k = 7 = n - 1

Regular graphs for population size n = 8.

Experimental Setup

Bi-section method to determine optimal population

Experimental Setup

Onemax, 2-trap, 3-trap, 4-trap, MMDP

Synchronous cellular EA

Binary tournament, two-point crossover, bit-flip mutation

deceptive

Results: optimal population size

	onemax	2-trap	3-trap	4-trap	MMDP
<i>k</i> = 2	400	500	350	400	500
k = 4	450	500	350	450	500
k = 8	500	550	350	500	500
<i>k</i> = 16	550	700	400	550	500
<i>k</i> = 32	800	750	500	550	550
k = 64	1000	1000	650	650	650
k = 128	1200	1300	700	750	750
k = n - 1	2200	2275	1100	1200	800

Results

		onemax	2-trap	3-trap	4-trap	MMDP
	k = 2	319,986.21	348,483.33	133,712.07	146,560.00	168,266.67
		$\pm 17,253.56$	$\pm 22,773.05$	$\pm 16,085.69$	±18,423.25	$\pm 29,590.81$
	k = 4	219,930.00	222,433.33	86,205.00	104,167.24	108,866.67
		$\pm 12,784.26$	$\pm 26,610.77$	$\pm 10,812.42$	$\pm 12,786.66$	$\pm 14,151.84$
	k = 8	157,233.33	147,,836.21	54,961.67	73,206.90	66,100.00
		$\pm 7,747.89$	$\pm 1,1261.46$	$\pm 5,178.70$	$\pm 10,743.37$	$\pm 8,515.10$
	<i>k</i> = 16	114,210.34	129,173.33	41,701.67	51,645.00	44,724.14
		±5,271.88	$\pm 7,495.93$	$\pm 4,602.52$	$\pm 4,915.85$	$\pm 5,630.89$
	<i>k</i> = 32	122,560.00	99,795.00	38,683.33	40,425.00	35,806.90
		$\pm 5,366.15$	±5,847.96	$\pm 3,100.29$	$\pm 4,175.58$	$\pm 2,988.51$
	<i>k</i> = 64	117,933.33	104,068.97	40,913.33	37,812.07	33,979.31
		$\pm 4,448.42$	\pm 4,008.30	$\pm 2,966.80$	±2,395.00	$\pm 3,254.16$
	<i>k</i> = 128	120,331.03	110,196.67	37,727.59	38,700.00	33,725.00
		$\pm 3,887.07$	$\pm 4,601.69$	±1,947.32	±3,275.69	$\pm 2,904.63$
	k = n - 1	181,462.07	160,463.33	51,920.00	49,646.67	33,296.55
		$\pm 5,010.59$	$\pm 3,995.89$	$\pm 3,792.95$	$\pm 3,989.5$	±2,142.51

Results

	onemax	2-trap	3-trap	4-trap	MMDP
<i>k</i> = 2	95,900.00 ±3,626.24	235,716.67 ±23,382.20	99,497.22 ±15799.90	110,708.33 ±21,653.64	124,673.91 ±58,068.80
k = 4	72,460.00 ±2,769.36	148,950.00 ±16,527.33	65,856.00 ±12,553.7	67,452.17 ±10,967.43	151,840.91 ±200,212.74
k = 8	55,493.33 ±2,183.79	117,900.00 ±49,055.90	58,403.95 ±89,744.99	43,233.33 ±5,718.13	114,608.70 ±166,207.75
<i>k</i> = 16	43,646.67 ±2,058.24	217,041.67 ±371,359.30	25,300.00 ±2,710.82	26,914.29 ±4,989.13	116,761.36 ±230,706.28
<i>k</i> = 32	35,793.33 ±1,960.64	423,041.67 ±203,743.01	17,675.00	18,600.00	162,950.00 ±230,706.28
<i>k</i> = 64	32,866.67 ±1,590.78	615,841.67 ±228,150.17	-	15,000.00	86,708.33 ±119,648.17
k = 128	32,333.33 ±2,074.03	608,983.33 ±239,684.09	-	13800.00	287,468.75 ±304,905.86
k1	31,600.00	611,441.67	-	-	127,277.78

Conclusions

- Graphs with lower degree require smaller populations.
- However, the larger populations required by graphs with higher degree converge faster to global optima.
- When the population is properly set, higher degree or even panmictic populations are more efficient.
- Conclusions on the performance of the different structures are different if the population size is set to the same value for all configurations.

Future Work

- Random, small-world and dynamic structures.
- Takeover times of different graphs, with different population size.
- Performance of the different structures with growing string size (scalability tests).
- Parallel implementations.

Questions?